Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammal ; 104(4): 820-832, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545667

RESUMO

Carnivores play critical roles in ecosystems, yet many species are declining worldwide. The Sierra Nevada Red Fox (Vulpes vulpes necator; SNRF) is a rare and endangered subspecies of red fox limited to upper montane forests, subalpine, and alpine environments of California and Oregon, United States. Having experienced significant distribution contractions and population declines in the last century, the subspecies is listed as at-risk by relevant federal and state agencies. Updated information on its contemporary distribution and density is needed to guide and evaluate conservation and management actions. We combined 12 years (2009-2020) of detection and nondetection data collected throughout California and Oregon to model the potential distribution and density of SNRFs throughout their historical and contemporary ranges. We used an integrated species distribution and density modeling approach, which predicted SNRF density in sampled locations based on observed relationships between environmental covariates and detection frequencies, and then projected those predictions to unsampled locations based on the estimated correlations with environmental covariates. This approach provided predictions that serve as density estimates in sampled regions and projections in unsampled areas. Our model predicted a density of 1.06 (95% credible interval = 0.8-1.36) foxes per 100 km2 distributed throughout 22,926 km2 in three distinct regions of California and Oregon-Sierra Nevada, Lassen Peak, and Oregon Cascades. SNRFs were most likely to be found in areas with low minimum temperatures and high snow water equivalent. Our results provide a contemporary baseline to inform the development and evaluation of conservation and management actions, and guide future survey efforts.

2.
J Anim Ecol ; 87(3): 813-824, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282715

RESUMO

Determining how species coexist is critical for understanding functional diversity, niche partitioning and interspecific interactions. Identifying the direct and indirect interactions among sympatric carnivores that enable their coexistence is particularly important to elucidate because they are integral for maintaining ecosystem function. We studied the effects of removing nine fishers (Pekania pennanti) on their population dynamics and used this perturbation to elucidate the interspecific interactions among fishers, grey foxes (Urocyon cinereoargenteus) and ringtails (Bassariscus astutus). Grey foxes (family: Canidae) are likely to compete with fishers due to their similar body sizes and dietary overlap, and ringtails (family: Procyonidae), like fishers, are semi-arboreal species of conservation concern. We used spatial capture-recapture to investigate fisher population numbers and dynamic occupancy models that incorporated interspecific interactions to investigate the effects members of these species had on the colonization and persistence of each other's site occupancy. The fisher population showed no change in density for up to 3 years following the removals of fishers for translocations. In contrast, fisher site occupancy decreased in the years immediately following the translocations. During this same time period, site occupancy by grey foxes increased and remained elevated through the end of the study. We found a complicated hierarchy among fishers, foxes and ringtails. Fishers affected grey fox site persistence negatively but had a positive effect on their colonization. Foxes had a positive effect on ringtail site colonization. Thus, fishers were the dominant small carnivore where present and negatively affected foxes directly and ringtails indirectly. Coexistence among the small carnivores we studied appears to reflect dynamic spatial partitioning. Conservation and management efforts should investigate how intraguild interactions may influence the recolonization of carnivores to previously occupied landscapes.


Assuntos
Raposas/fisiologia , Características de História de Vida , Mustelidae/fisiologia , Procyonidae/fisiologia , Animais , California , Feminino , Masculino , Modelos Biológicos , Oregon , Dinâmica Populacional , Predomínio Social
3.
PLoS One ; 10(11): e0140640, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536481

RESUMO

Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species.


Assuntos
Conservação dos Recursos Naturais , Poluentes Ambientais/intoxicação , Poluição Ambiental/efeitos adversos , Mustelidae , Animais , California , Feminino , Cadeia Alimentar , Humanos , Masculino , Densidade Demográfica
4.
PLoS One ; 7(7): e40163, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808110

RESUMO

Anticoagulant rodenticide (AR) poisoning has emerged as a significant concern for conservation and management of non-target wildlife. The purpose for these toxicants is to suppress pest populations in agricultural or urban settings. The potential of direct and indirect exposures and illicit use of ARs on public and community forest lands have recently raised concern for fishers (Martes pennanti), a candidate for listing under the federal Endangered Species Act in the Pacific states. In an investigation of threats to fisher population persistence in the two isolated California populations, we investigate the magnitude of this previously undocumented threat to fishers, we tested 58 carcasses for the presence and quantification of ARs, conducted spatial analysis of exposed fishers in an effort to identify potential point sources of AR, and identified fishers that died directly due to AR poisoning. We found 46 of 58 (79%) fishers exposed to an AR with 96% of those individuals having been exposed to one or more second-generation AR compounds. No spatial clustering of AR exposure was detected and the spatial distribution of exposure suggests that AR contamination is widespread within the fisher's range in California, which encompasses mostly public forest and park lands Additionally, we diagnosed four fisher deaths, including a lactating female, that were directly attributed to AR toxicosis and documented the first neonatal or milk transfer of an AR to an altricial fisher kit. These ARs, which some are acutely toxic, pose both a direct mortality or fitness risk to fishers, and a significant indirect risk to these isolated populations. Future research should be directed towards investigating risks to prey populations fishers are dependent on, exposure in other rare forest carnivores, and potential AR point sources such as illegal marijuana cultivation in the range of fishers on California public lands.


Assuntos
Agricultura , Anticoagulantes/intoxicação , Espécies em Perigo de Extinção , Exposição Ambiental/análise , Mustelidae/fisiologia , Rodenticidas/intoxicação , Análise Espacial , Animais , Animais Recém-Nascidos , California , Monitoramento Ambiental , Feminino , Geografia , Dinâmica Populacional , Cavidade Torácica/efeitos dos fármacos , Cavidade Torácica/patologia , Árvores
5.
J Wildl Dis ; 46(3): 966-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20688707

RESUMO

Wildlife managers often need to assess the current health status of wildlife communities before implementation of management actions involving surveillance, reintroductions, or translocations. We estimated the sensitivity and specificity of a commercially available domestic canine rapid diagnostic antigen test for canine parvovirus and a rapid enzyme-linked immunosorbent assay for the detection of antibodies toward Anaplasma phagocytophilum on populations of fishers (Martes pennanti) and sympatric gray foxes (Urocyon cinereoargenteus). Eighty-two fecal samples from 66 fishers and 16 gray foxes were tested with both SNAP((R)) PARVO rapid diagnostic test (RDT) and a nested polymerase chain reaction (PCR). Whole blood samples from 23 fishers and 53 gray foxes were tested with both SNAP 4Dx RDT and immunofluorescence assays (IFAs). The SNAP PARVO RDT detected no parvovirus, whereas PCR detected the virus in 17 samples. Eleven samples were positive using the SNAP 4Dx RDT, whereas 46 samples tested by IFA were positive for A. phagocytophilum. Both RDTs had low sensitivity and poor test agreement. These findings clearly demonstrate the importance of validating RDTs developed for domesticated animals before using them for wildlife populations.


Assuntos
Testes Diagnósticos de Rotina/veterinária , Raposas/microbiologia , Nível de Saúde , Mustelidae/microbiologia , Anaplasma phagocytophilum/imunologia , Animais , Animais Selvagens , Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Testes Diagnósticos de Rotina/normas , Feminino , Raposas/virologia , Masculino , Mustelidae/virologia , Parvovirus Canino/imunologia , Reação em Cadeia da Polimerase/veterinária , Vigilância da População , Kit de Reagentes para Diagnóstico/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...